layout: true <div class="my-footer"><span>Yannis Galanakis (UoK) โข "Are you in the right job?" Human Capital Mismatch in the UK</span></div> <!-- this adds the link footer to all slides, depends on my-footer class in css--> --- name: xaringan-title class: left, middle # "Are you in the right job?" Human Capital Mismatch in the UK ![](https://img.shields.io/badge/project_status-WIP-yellow?style=flat) .large[Yannis Galanakis <br> <span style = 'font-size: 75%;'> University of Kent</span> <br> <br> November 2021 ] .pull-left[ ] .pull-right[
<i.galanakis@kent.ac.uk> <br>
[@YannisGalanakis](https://twitter.com/YannisGalanakis) <br>
[ygalanak](http://github.com/ygalanak)
Job Market Candidate ] --- name: inequality # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Job allocation in the labour market .pull-left[ * Complementarity between human and physical capital `\(\Rightarrow\)` market imperfections * Job allocation explains wage heterogeneity relative to skills > * inequality among high-skilled workers > * skills vs. good job > * search frictions `\(\rightarrow\)` privilege > * e.g. father's background ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-1-1.png" width="75%" style="display: block; margin: auto;" /> <center> <small><p class="caption"> Figure: Wage inequality among high-skilled workers </p></small> </center> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Frictions: Parental background vs. graduate job .pull-left[ - Higher-skilled father: `\(\uparrow\)` probability of graduate job > <span style = 'color:#8FBCBB;'>Mechanism:</span> More paternal skills = resources to transmit skills (e.g. stronger network) - Do individual skills matter? - When controlling for skills, probability `\(\downarrow\)` `\(\Rightarrow\)` frictions ] .pull-right[ ## <span style = 'font-size: 60%;'> Effect of father's education or social class </span> <img src="index_files/figure-html/unnamed-chunk-2-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> This paper <dl> <dt>Question</dt> <dd>What is the role of job allocation in mismatch? Does job mismatch come from individual heterogeneity?</dd> <dt>Model</dt> <ul> <dt>based</dt> <dd>Burdett & Mortensen (1998)</dd> <dt>finding</dt> <dd>frictions generate mismatch</dd> </ul> <dt>Data</dt> <dd>BHPS/UKHLS and BCS70</dd> <dt>ID</dt> <dd>novel measure of mismatch based on the observed distributions of human capital and jobs</dd> <dt>Findings</dt> <dd> <ol> <li>Increase of mismatch after the Great Recession</li> <li>Employees can find better jobs or their mobility occurs earlier than the aggregate change of skills</li> <li>Unobserved productivity does not generate mismatch in the market</li> </ol></dd> </dl> --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Related literature <iframe src="literature.html" style="height: 75%; width: 100%;" scrolling="no" seamless allowtransparency="true" frameBorder="0"></iframe> --- class: center, middle # Model --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> How does the labour market work? ## Model motivation <iframe src="LM.html" style="height: 150%; width: 100%;" scrolling="no" seamless allowtransparency="true" frameBorder="0"></iframe> --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Assumptions 1. `\(M_w\)` workers: employed or Out-of-Work (OoW) - 3-types: low-, middle-, high-skilled workers - `\(b\)`: flat benefit of OoW 2. `\(M_f\)` firms: - 3 types: low-, middle-, high-productivity firms - `\(p_l \lt p_m \lt p_h\)`: flow of revenue per employee - `\(\sigma_i\)`: fraction of each type of firms 3. Wage setting: - Employers set wages once-for-all to maximize steady-state profits - Each type of worker within a firm earns the same `\(w\)` 4. Matching technology: - `\(\lambda\)`: Arrival rate to employment. Ass: `\(0 < \lambda < \infty\)` - `\(\delta\)`: Job destruction rate. Ass: `\(0 < \delta < \infty\)` --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Worker's behaviour - Search among employers - an offer is assumed to be the realization of a random draw from `\(F(ยท)\)`: the distribution of wage offers across employers - `\(F(ยท)\)` is the weighted average salary offer made by the 3 types of firms: $$ F(w)= \sigma_1F_1(w) + \sigma_2F_2(w)+\big(1-(\sigma_1+\sigma_2)\big)F_3(w) $$ - Accept-an-offer conditions: > <span style = 'color:#8FBCBB;'>OoW: </span> if `\(w > \phi\)`, where `\(\phi\)` is the reservation wage. Here `\(\phi = b\)` > <span style = 'color:#8FBCBB;'>Employed: </span> if wage offer is above their current wage --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Firms' decision - They choose wage so that $$ \max_{w \geq \phi}\pi_i = (p_i-w)\ell(w) $$ where `\(\ell(w)\)` is the size of firms and equals to `\(\frac{\overbrace{g(w)}^{\text{# of workers in firms in that range}}}{\underbrace{f(w)}_{\text{# of firms}\equiv \text{average empl per firm}}}\)` ??? _- In the steady-state, firms max `\(\pi\)` subject to the steady-state employment condition (eq. 3, slide 6)_ --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Steady-state Equilibrium Conditions (I) - **The non-employment rate**: Flow of workers exiting work should be equal to the flow of workers OoW $$ u=\frac{\delta}{\delta+\lambda}=\frac{1}{1+\kappa} $$ where `\(\kappa=\frac{\lambda}{\delta}\)` is a market-friction parameter - **Distribution of salaries (across workers)**: Flow of workers into jobs providing a wage no larger than `\(w\)` should be equal to flow of workers out of jobs providing a wage no larger than `\(w\)` $$ G(w) = \frac{F(w)}{1+\kappa\big(1-F(w)\big)} $$ where `\(G(w)\)` is the cumulative distribution of salaries --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Steady-state Equilibrium Conditions (II) - **Average size of firms**: Assuming uniform hiring effort, $$ \ell(w) = \frac{1+\kappa}{\Big(1+\kappa \big(1-F(w)\big)\Big)^2} $$ - **Profits** $$ \pi_i = \frac{\kappa(p_i-w)}{\Big(1+\kappa \big(1-F(w)\big)\Big)^2} $$ --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Steady-state Equilibrium Conditions (III) - **Equal profit condition**: Since `\(w_3\geq w_2 \geq w_1\)` `\(\forall w_i\)` on `\(\text{supp}(F_i)\)`, it holds that $$ `\begin{cases} (p_1-w_1)\frac{1+\kappa}{\Big(1+\kappa \big(1-F(w)\big)\Big)^2}= (p_1-b) \frac{1+\kappa}{(1+\kappa)^2},& \text{if } w<w_1\\ (p_2-w_2)\frac{1+\kappa}{\Big(1+\kappa \big(1-F(w)\big)\Big)^2}= (p_2-w_1) \frac{1+\kappa}{\big(1+\kappa\sigma_1\big)^2}, & \text{if } w_1<w<w_2 \\ (p_3-w_3)\frac{1+\kappa}{\Big(1+\kappa \big(1-F(w)\big)\Big)^2}= (p_3-w_2) \frac{1+\kappa}{\big(1+\kappa(1-(\sigma_1+\sigma_2))\big)^2}, & \text{if } w>w_2 \end{cases}` $$ --- class: center, middle # Simulation I - Discrete skills --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Parametrization <table class=" lightable-paper lightable-striped" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;color: white !important;background-color: #3B4252 !important;"> Parameter </th> <th style="text-align:left;color: white !important;background-color: #3B4252 !important;"> Value </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(b\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 0.8 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\delta\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 0.287 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\lambda\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 0.142 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(p_1\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 2 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(p_2\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 2.5 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(p_3\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> 3 </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\sigma_1\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\frac{1}{3}\)` </td> </tr> <tr> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\sigma_2\)` </td> <td style="text-align:left;color: white !important;background-color: #3B4252 !important;"> `\(\frac{1}{3}\)` </td> </tr> </tbody> </table> --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Cumulative Distributions .pull-left[ <span style = 'color:#8FBCBB;'> Implication 1: </span> Kinked distributions - 2 kinks for 3 types of firms - `\(G(w)<F(w)\)`: `\(F(w)\)` first-order stochastically dominates `\(G(w)\)` <span style = 'color:#8FBCBB;'> Implication 2: </span> More productive firms offer higher wages ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-4-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Density Distributions .pull-left[ - Jumps separate firms > <span style = 'color:#8FBCBB;'> `\(\overline{w_1}=\underline{w_2}\)` </span>: low- to middle-productivity firms > <span style = 'color:#8FBCBB;'> `\(\overline{w_2}=\underline{w_3}\)` </span>: middle- to high-productivity firms <span style = 'color:#8FBCBB;'> Implication 3 </span>: Overlap: Number of workers in middle-prod firms exceeds the average employment per firm. - High-skilled workers wait until they find a better job ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-5-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Labour force .pull-left[ <span style = 'color:#8FBCBB;'> Implication 4: </span> More productive firms: - are more profitable - attract more workers - lose less workers to other employers ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-6-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Mismatch in BM world ## Equal distribution of workers in each skill-type; `\(\omega_i=\frac{1}{3}\)` .pull-left[ <figure> <center> <figcaption>Table: Proportion of each skills- and job-type distribution </figcaption> <image src="fromTEX/proportionsTable.png" style="width:100%"> </center> </figure> ] .pull-right[ <figure> <center> <image src="fromTEX/proportionOfSkillTypeinEachJob.png" style="width:85%"> </center> </figure> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Gender differences in frictions and returns to skills .pull-left[ - Women face more frictions than men - BM limitation: job transitions based on better wage offers > <span style = 'color:#8FBCBB;'>higher `\(\delta\)`:</span> e.g. move because of partner's new job, get pregnant, nursery's availability changes > <span style = 'color:#8FBCBB;'>lower `\(\lambda\)`:</span> e.g. searching for a firm in the area where partner's job is or near school ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-7-1.png" width="75%" style="display: block; margin: auto;" /> ] --- name: FrictionsMatter # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Do frictions matter?: The role of firms' share .pull-left[ - Less frictions, lower-prod firms collapse quicker to PC with a lower `\(\sigma\)` > <span style = 'color:#8FBCBB;'>Mechanism 1:</span> Fewer firms in each category `\(\Rightarrow\)` more high-skilled workers > <span style = 'color:#8FBCBB;'>Mechanism 2:</span> `\(\sigma\)` determines the penalty of mismatch - `\(\kappa\)` large `\(\Rightarrow\)` variation in `\(\sigma\)` has *no* effect - `\(\kappa\)` small `\(\Rightarrow\)` variation in `\(\sigma\)` has a *big* effect - Smaller `\(\sigma\)` + greater `\(\kappa\)` `\(\Rightarrow\)` `\(\downarrow\)` mismatch ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-8-1.png" width="75%" style="display: block; margin: auto;" /> .content-box-green[<span style = 'font-size: 60%;'>
[Change `\(\kappa\)`, constant `\(\sigma\)`](#FrictionsConstantSigma)</span> ] ] --- class: center, middle # Simulation II - Continuous skills --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Continuous worker productivity .pull-left[ - 3-types of firms and workers - under-estimate the extent of mismatch > - <span style = 'color:#8FBCBB;'> `\(\kappa\)` `\(\rightarrow\)` `\(\infty\)`:</span> No frictions in LM. Relative productivity is determined by relative wages > - <span style = 'color:#8FBCBB;'> `\(\kappa\)` `\(\rightarrow\)` 0: </span> More frictions weaken the relationship of `\(w\)` and `\(p\)` - `\(>3\)` categories to proxy the data ] .pull-right[ <figure> <center> <image src="fromTEX/frictionsarrow.png" style="width:100%"> </center> </figure> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Productivity vs. Expected wage .pull-left[ - `\(\kappa \rightarrow \infty\)` collapse to PC, where matching is perfect - Expected wage: $$ E(w) = \frac{\delta}{\delta +\lambda}b+\frac{\lambda}{\delta + \lambda}p $$ <span style = 'color:#8FBCBB;'>Mechanism 1:</span> Frictions in LM <span style = 'color:#8FBCBB;'>Mechanism 2:</span> Mismatch: higher-skilled workers are in mismatch - The gap increases with `\(p\)` ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-9-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Mismatch: Impact of frictions on E(w|skills) .pull-left[ `\(\kappa=0.492\)` <img src="index_files/figure-html/unnamed-chunk-10-1.png" width="75%" style="display: block; margin: auto;" /> ] .pull-right[ `\(\kappa=2\)` <img src="index_files/figure-html/unnamed-chunk-11-1.png" width="75%" style="display: block; margin: auto;" /> ] --- class: center, middle # Data - Empirical methodology --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Data - Unbalanced Panel: 1. British Household Panel Survey (BHPS) > - waves 1-18; > - 1991-2009 2. UK Household Longitudinal Study (Understanding Society) > - waves 2-7; > - 2010-2015 - Balanced Panel: British Cohort Study (BCS70) - waves 1-7 (age 5-38); - rich cognitive and non-cognitive test scores in childhood ??? _- Contribution: No study employs these datasets to explore_ --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Empirical methodology ## Identification of mismatch - How many workers in low-productivity occupations hold similar human capital to those in middle-productivity ones? - Wage equation: `\(\ln [\text{wage}]_{i,t}= \alpha + \beta_1 x_i + \sum_{k=2}^7 \beta_k S_{k,i,t} + \vartheta_t +u_{i,t}\)` - Selection equation: `\(\text{Labour force}_{i,t} = \alpha + \delta_1 z_{i,t} + \delta_2 FS_{i,t} + \delta_3 \text{HHmembers}_{i,t}+ \vartheta_t + v_{i,t}\)` --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Who is in mismatch? .pull-left[ - Who is in mismatch? `\(\text{mismatched}_{i,t} = \widehat{HC}_{i,t} | occ_{j,t}> \bigg(\widetilde{\widehat{HC}}_t | occ_{j-1,t} \bigg)\)` where `\(\widetilde{\widehat{HC}}\)`: median of the estimated HC ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-12-1.png" width="75%" style="display: block; margin: auto;" /> ] --- class: center, middle # Results --- name: incidence # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Incidence of mismatch .pull-left[ - steep rise after the Great Recession - HCM follows the augmenting unemployment trend - reduced female LF participation - Should we blame the dataset? <br> Maybe not <br> <small> (Postel-Vinay & Sepahsalari; 2019) </small> - Robustness checks 1. Measurement .content-box-green[<span style = 'font-size: 60%;'>
[graph](#MeasurementRobustness)</span> ] 2. Mismatch vs. job satisfaction .content-box-green[<span style = 'font-size: 60%;'>
[Job satisfaction](#JobSatisfactionMismatch)</span> ] ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-13-1.png" width="75%" style="display: block; margin: auto;" /> .content-box-green[<span style = 'font-size: 60%;'>
[Pooled by gender](#IncidenceGender)</span> ] ] --- name: incidenceBCS70 # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Effect of skills .pull-left[ - Productivity: cognitive + non-cognitive skills - Findings: - Incidence does *not* fluctuate much over time - mobility: match vs. mismatch .content-box-green[<span style = 'font-size: 60%;'>
[Transitions](#transitionsBCS70)</span> ] - Instance of mismatch *increases* when controlling for skills - Sample sizes between BHPS and BCS70 differ: weighting .content-box-green[<span style = 'font-size: 60%;'>
[Robustness I: Differences in skills test scores](#RobustnessI)</span> ] .content-box-green[<span style = 'font-size: 60%;'>
[Robustness II: PCA](#RobustnessII)</span> ] ] .pull-right[ <img src="index_files/figure-html/unnamed-chunk-14-1.png" width="75%" style="display: block; margin: auto;" /> ] --- # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Conclusion ## What did you learn today? - Model: 1. Job search frictions generate mismatch between workers and firms. 2. In a continuous skills setting, higher-skilled workers have a lower expected wage. - BHPS/UKHLS: Mismatch increases after the Great Recession - BCS70: Unobserved productivity does not generate mismatch in the market <font size="+3"> <strong>Takeway:</strong> Mismatch = `\(f(\underbrace{\text{frictions}}_{๐}, \underbrace{\text{unobserved productivity}}_{๐ถ})\)` </font> --- class: inverse background-image: url(img/Kent_Economics_White.svg) background-size: 260px background-position: 5% 95% # Thank you! .pull-right[.pull-down[ <a href="mailto:i.galanakis@kent.ac.uk"> .white[
i.galanakis@kent.ac.uk] </a> <a href="https://www.yannisgalanakis.com/jmp/"> .white[
yannisgalanakis.com/jmp] </a> <a href="https://ygalanakis.shinyapps.io/appJMP"> .white[
ygalanakis.shinyapps.io/appJMP] </a> <a href="http://twitter.com/YannisGalanakis"> .white[
@YannisGalanakis] </a> <a href="http://github.com/ygalanak"> .white[
@ygalanak] </a> <br><br><br> ]] --- name: FrictionsConstantSigma <figure> <center> <image src="fromTEX/frictionsmatter.png" style="width:100%"> </center> </figure> .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#FrictionsMatter)</span> ] ] --- name: MeasurementRobustness # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Measurement Robustness <center> <img src="index_files/figure-html/unnamed-chunk-15-1.png" width="35%" style="display: block; margin: auto;" /> </center> .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidence)</span> ] ] --- name: JobSatisfactionMismatch # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Mismatch vs. job satisfaction <center> <img src="index_files/figure-html/unnamed-chunk-16-1.png" width="35%" style="display: block; margin: auto;" /> </center> .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidence)</span> ] ] --- name: IncidenceGender # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Incidence of mismatch by gender <center> <img src="index_files/figure-html/unnamed-chunk-17-1.png" width="35%" style="display: block; margin: auto;" /> </center> .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidence)</span> ] ] --- name: transitionsBCS70 # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Transitions in mismatch status <figure> <center> <image src="fromTEX/mismatchTransitions.png" style="width:80%"> </center> </figure> .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidenceBCS70)</span> ] ] --- name: RobustnessI # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Robustness for unobserved productivity (I) - Differences in skills test scores by mismatch and gender - Report: cognitive and non-cognitive skill test scores of those who hold a degree or not by mismatch status (and by gender) - Findings: > <span style = 'color:#8FBCBB;'>Non-cognitive:</span> 1. no difference by mismatch for degree and non-degree holders 2. Women have greater non-cognitive test scores: earlier maturity > <span style = 'color:#8FBCBB;'>Cognitive:</span> 1. middle-skilled in match: lower cognitive skills 2. high-skilled: no statistically significant difference 3. women outperform men `\(\Rightarrow\)` *no* evidence that unobserved skill would explain mismatch for degree holders .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidenceBCS70)</span> ] ] --- name: RobustnessII # <span style = 'color:#D8DEE9; font-size: 60%;'>
</span> Robustness for unobserved productivity (II) - Principal Component Analysis on skills - reduce the dimensionality of the data: important when correlation is high - k-fold cross-validation: out-of-sample variation prediction <span style = 'color:#8FBCBB;'>Findings:</span> how skills interact with mismatch 1. Number of components: cognitive and non-cognitive skills substitute each other 2. Drivers of personality โ wages โ returns to skills .footnote[ .content-box-green[<span style = 'font-size: 60%;'>
[Back](#incidenceBCS70)</span> ] ]